作者:ADI产品应用工程师Stephen Nugent
(资料图片)
源极和漏极之间的关断电容CDS(OFF)可用来衡量关断开关后,源极信号耦合到漏极的能力。它是固态继电器(如PhotoMOS、OptoMOS、光继电器或MOSFET继电器)中常见的规格参数,在固态继电器数据手册中通常称为输出电容COUT。CMOS开关通常不包含此规格参数,但关断隔离度是表征相同现象的另一种方法,关断隔离度定义为,开关关断状态下,耦合到漏极的源极的信号量。ADI将在本文讨论如何从关断隔离度推导出COUT,以及如何通过它来更有效地比较固态继电器和CMOS开关的性能。这一点很重要,因为CMOS开关适合许多使用固态继电器的应用,例如切换直流信号和高速交流信号。
如何从关断隔离度导出CDS(OFF)
图1显示ADG5412的关断隔离度与频率的典型性能图。该图显示,当源极上的信号频率上升时,关断隔离度降低。
image001.png
图1.ADG5412关断隔离度与频率的关系(±15V双电源)
这意味着,随着信号频率增加,源极上有更多信号会出现在关断开关的漏极。如果您观察开关的等效电路在关断状态下的表现,如图2中的测试电路所示,会发现这种状况不足为奇。当开关处于断开状态时,源极和漏极之间存在寄生电容,即图中的CDS(OFF)。这种寄生电容使高频信号能够通过,关断隔离图就是为了确定这些特征。
image003.png
图2.关断隔离度测量测试电路
从图2所示的测试电路中获取VS和VOUT,然后将它们代入以下公式中,以计算关断隔离度:
image005.png
将从关断隔离图中得到的结果应用到开路开关的等效电路中,可计算得出CMOS开关的CDS(OFF)。首先,如果考虑关断开关通道和负载,可以将电路视为高通滤波器,如图3所示。
image007.png
图3.CDS(OFF)和RL高通滤波器
所示电路的转换函数可以通过以下公式计算得出:
image009.png
接下来,考虑源电压VS及其阻抗,如图2所示。源阻抗RS为50Ω,与50Ω负载阻抗RL匹配。假设在理想情况下,CDS(OFF)短路,那么在阻抗相等时,VS为VIN的2倍。这意味着,当根据VS计算转换函数时,整个转换函数会翻倍。
所以,整个系统的转换函数为:
image011.png
然后,可以将这个转换函数代入关断隔离度公式,得出:
image013.png
然后,重新变换该公式,求解CDS(OFF)的值:
image015.png
这意味着,如果知道RL、输入信号的频率f,以及关断隔离规格值(dB),就可以计算出CDS(OFF)。这些值可以在ADI产品系列中的开关或多路复用器产品的数据手册中找到。以下示例将展示其执行步骤。
CDS(OFF)计算示例
本例使用受SPI控制的4路SPST开关ADGS1612。ADGS1612的关断隔离规格为−65dB,可以在数据手册中的表1中找到。根据关断隔离规格的测试条件部分,RL为50Ω,信号频率f为100kHz。将这些值代入CDS(OFF)公式,可以计算得出电容值。
image017.png
注意,在开关与多路复用器的关断隔离测量电路中,在开关通道的源极引脚之前,可能包含一个额外的50Ω端接电阻,如图4所示。采用以这种方式测量得出的关断隔离规格,仍然可以使用CDS(OFF)公式进行计算。但是,如果源极引脚使用50Ω端接电阻(随后用于CDS(OFF)公式中),需要在数据手册给出的关断隔离规格的基础上加上6dB。这是为了进行补偿,因为源极的50Ω端接电阻会使电压减半,相当于−6dB。
image019.png
图4.源极上具有50 Ω端接电阻的关断隔离度测试电路
CMOS开关与固态继电器的关系
表1显示从ADI产品系列中选择的开关产品的CDS(OFF)值。ADG54xx和ADG52xx系列可以处理摆幅高达44V的信号电压,ADG14xx和ADG12xx系列可以传输摆幅高达33V的信号电压。这种可比较信号的范围为30V至40V固态继电器。表中的最后一列还显示了如何使用CDS(OFF)和开关导通电阻来计算RON、CDS(OFF)乘积,在固态继电器中,它被用作等第值(order of merit)。RON、CDS(OFF)乘积显示在开关开启时,对信号的衰减影响非常小,以及开关在关断时,阻截高速信号的作用有多强。该表显示ADG1412的RON、COFF乘积小于5,在市面上的固态继电器中,这一点相当有优势。
表1.在ADI产品系列中选择SPST × 4开关的CDS(OFF)
最大电源电压 | 关断隔离 | CDS(关断) | 导通电阻 | R × C
关键词: 固态继电器 测试电路 数据手册 端接电阻 产品系列 业界资讯X 关闭 专题
X 关闭 信息
|